2x^2/3+5=23

Simple and best practice solution for 2x^2/3+5=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2/3+5=23 equation:



2x^2/3+5=23
We move all terms to the left:
2x^2/3+5-(23)=0
We add all the numbers together, and all the variables
2x^2/3-18=0
We multiply all the terms by the denominator
2x^2-18*3=0
We add all the numbers together, and all the variables
2x^2-54=0
a = 2; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·2·(-54)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*2}=\frac{0-12\sqrt{3}}{4} =-\frac{12\sqrt{3}}{4} =-3\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*2}=\frac{0+12\sqrt{3}}{4} =\frac{12\sqrt{3}}{4} =3\sqrt{3} $

See similar equations:

| 16t=-18t+10 | | 3x=5+50 | | (x+2)(x+4)(x+6)(x+8)-9=0 | | F(2)=-4x-1 | | 3x17=2x+14 | | -66=-11p | | (6y+6y)-7=2 | | 38x=22 | | 2-7y=-13 | | -25=x-6 | | 40a-a^2=39 | | (3y+3y)-4=6 | | -14=6x-8(x | | 2/z-5=z/0.5^2-7 | | 11x-18=6x+4 | | 1/2(37+x)=16+x | | (2y+2y)-7=9 | | y/7+15=8 | | 11x-4=9x-2 | | (17x+85)=17 | | x=8=20 | | (5y+5y)-7=4 | | -4x-3x+10x+10+8=36 | | (X-4/2)+(4x/5)=1 | | 40*x-x^16-39=0 | | 4(5q-2)=52 | | 39/45=x/30 | | 3x^2+11x-20x=0 | | 3x2+11x-20x=0 | | 90+5z+1=121 | | (7y+7y)-6=2 | | 13x+11=2x+67 |

Equations solver categories